Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0049924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470055

RESUMO

Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE: The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.


Assuntos
Rotavirus , Rotavirus/genética , Compartimentos de Replicação Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Microscopia Crioeletrônica , Replicação Viral/fisiologia , RNA , Peptídeos
2.
Gut ; 72(6): 1101-1114, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36191962

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial condition driven by genetic and environmental risk factors. A genetic variation in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with autoimmune disorders while protecting from the IBD subtype Crohn's disease. Mice expressing the murine orthologous PTPN22-R619W variant are protected from intestinal inflammation in the model of acute dextran sodium sulfate (DSS)-induced colitis. We previously identified food-grade titanium dioxide (TiO2, E171) as a neglected IBD risk factor. Here, we investigate the interplay of the PTPN22 variant and TiO2-mediated effects during IBD pathogenesis. DESIGN: Acute DSS colitis was induced in wild-type and PTPN22 variant mice (PTPN22-R619W) and animals were treated with TiO2 nanoparticles during colitis induction. Disease-triggering mechanisms were investigated using bulk and single-cell RNA sequencing. RESULTS: In mice, administration of TiO2 nanoparticles abrogated the protective effect of the variant, rendering PTPN22-R619W mice susceptible to DSS colitis. In early disease, cytotoxic CD8+ T-cells were found to be reduced in the lamina propria of PTPN22-R619W mice, an effect reversed by TiO2 administration. Normalisation of T-cell populations correlated with increased Ifng expression and, at a later stage of disease, the promoted prevalence of proinflammatory macrophages that triggered severe intestinal inflammation. CONCLUSION: Our findings indicate that the consumption of TiO2 nanoparticles might have adverse effects on the gastrointestinal health of individuals carrying the PTPN22 variant. This demonstrates that environmental factors interact with genetic risk variants and can reverse a protective mechanism into a disease-promoting effect.


Assuntos
Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Nanopartículas , Camundongos , Animais , Doença de Crohn/genética , Doença de Crohn/complicações , Linfócitos T CD8-Positivos/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Inflamação/complicações , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética
3.
PLoS Pathog ; 18(7): e1010187, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816507

RESUMO

Nucleoli are membrane-less structures located within the nucleus and are known to be involved in many cellular functions, including stress response and cell cycle regulation. Besides, many viruses can employ the nucleolus or nucleolar proteins to promote different steps of their life cycle such as replication, transcription and assembly. While adeno-associated virus type 2 (AAV2) capsids have previously been reported to enter the host cell nucleus and accumulate in the nucleolus, both the role of the nucleolus in AAV2 infection, and the viral uncoating mechanism remain elusive. In all prior studies on AAV uncoating, viral capsids and viral genomes were not directly correlated on the single cell level, at least not in absence of a helper virus. To elucidate the properties of the nucleolus during AAV2 infection and to assess viral uncoating on a single cell level, we combined immunofluorescence analysis for detection of intact AAV2 capsids and capsid proteins with fluorescence in situ hybridization for detection of AAV2 genomes. The results of our experiments provide evidence that uncoating of AAV2 particles occurs in a stepwise process that is completed in the nucleolus and supported by alteration of the nucleolar structure.


Assuntos
Dependovirus , Desenvelopamento do Vírus , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Células HeLa , Humanos , Hibridização in Situ Fluorescente
4.
Virology ; 569: 29-36, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240536

RESUMO

Rotavirus (RV) replication occurs in cytoplasmic membrane-less, electron-dense inclusions termed viroplasms, composed of viral and cellular elements. These inclusions have been shown to colocalize with components of the lipid droplets (LDs), unique organelles that play an essential role in lipid metabolism. Given the robust LDs-viroplasm association, LDs have been proposed to serve as a scaffold for viroplasm assembly. Interestingly, no evidence has described the participation of lipid metabolism in other RV replication steps. Here, we report that lipid metabolism is essential to maintain the production of the infectious virus through a process independent of viroplasm biogenesis. Disruption of the lipogenesis-lipolysis balance dissociates endoplasmic reticulum membranes from viroplasms, suggesting that lipid metabolism is essential for a continuous flux of lipids to allow the association between viroplasms and ER membranes. LDs could also be relevant as lipid reservoirs for membrane synthesis required to form mature infectious rotavirus particles.


Assuntos
Rotavirus , Linhagem Celular , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Rotavirus/genética , Rotavirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Compartimentos de Replicação Viral , Replicação Viral
5.
Placenta ; 109: 37-42, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965813

RESUMO

INTRODUCTION: In an epitheliochorial placenta, the apical membranes of trophoblast cells and of uterine epithelial cells are in contact to each other (feto-maternal contact). In addition, there are also folds in which the trophoblast membrane is in contact with itself (feto-fetal contact) and areas where apical uterine epithelial membrane is in contact with itself (materno-maternal contact). METHODS: We use transmission electron microscopy of placental samples from pigs. (n = 3), cows (n = 2), sheep (n = 2), goat (n = 2) and roe deer (n = 1) to study the intermembrane distance in these three contact types. RESULTS: The measured intermembrane distances vary between 8 and 25 nm. One common feature is that the distance at feto-fetal contact sites is about 6-10 nm wider than at materno-maternal sites and feto-maternal sites show intermediate values. DISCUSSION: This finding suggests that the membrane distance at feto-maternal contact sites is determined by heterophilic binding of larger fetal to smaller maternal binding molecules. Homophilic binding of smaller maternal or larger fetal molecules lead to the smaller or wider intermembrane distances at materno-maternal or feto-fetal contact sites respectively. The observation that this similar pattern of membrane distances is present in pigs and in ruminants suggest that an evolutionary mechanism is involved in determining the intermembrane distance in epitheliochorial placentas.


Assuntos
Membranas Extraembrionárias/citologia , Relações Materno-Fetais/fisiologia , Placentação/fisiologia , Animais , Bovinos , Comunicação Celular , Córion/citologia , Córion/diagnóstico por imagem , Cervos , Membranas Extraembrionárias/diagnóstico por imagem , Feminino , Cabras , Microscopia Eletrônica de Transmissão , Placenta/citologia , Placenta/diagnóstico por imagem , Gravidez , Ovinos , Suínos , Trofoblastos/citologia , Trofoblastos/ultraestrutura
6.
Diabetologia ; 63(9): 1885-1899, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32385601

RESUMO

AIMS/HYPOTHESIS: Compared with the general population, individuals with diabetes have a higher risk of developing severe acute pancreatitis, a highly debilitating and potentially lethal inflammation of the exocrine pancreas. In this study, we investigated whether 1-deoxysphingolipids, atypical lipids that increase in the circulation following the development of diabetes, exacerbate the severity of pancreatitis in a diabetic setting. METHODS: We analysed whether administration of an L-serine-enriched diet to mouse models of diabetes, an established method for decreasing the synthesis of 1-deoxysphingolipids in vivo, reduced the severity of acute pancreatitis. Furthermore, we elucidated the molecular mechanisms underlying the lipotoxicity exerted by 1-deoxysphingolipids towards rodent pancreatic acinar cells in vitro. RESULTS: We demonstrated that L-serine supplementation reduced the damage of acinar tissue resulting from the induction of pancreatitis in diabetic mice (average histological damage score: 1.5 in L-serine-treated mice vs 2.7 in the control group). At the cellular level, we showed that L-serine decreased the production of reactive oxygen species, endoplasmic reticulum stress and cellular apoptosis in acinar tissue. Importantly, these parameters, together with DNA damage, were triggered in acinar cells upon treatment with 1-deoxysphingolipids in vitro, suggesting that these lipids are cytotoxic towards pancreatic acinar cells in a cell-autonomous manner. In search of the initiating events of the observed cytotoxicity, we discovered that 1-deoxysphingolipids induced early mitochondrial dysfunction in acinar cells, characterised by ultrastructural alterations, impaired oxygen consumption rate and reduced ATP synthesis. CONCLUSIONS/INTERPRETATION: Our results suggest that 1-deoxysphingolipids directly damage the functionality of pancreatic acinar cells and highlight that an L-serine-enriched diet may be used as a promising prophylactic intervention to reduce the severity of pancreatitis in the context of diabetes.


Assuntos
Células Acinares/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Pâncreas/efeitos dos fármacos , Pancreatite/metabolismo , Serina/farmacologia , Células Acinares/metabolismo , Células Acinares/ultraestrutura , Animais , Apoptose/efeitos dos fármacos , Ceruletídeo/toxicidade , Dano ao DNA/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Pâncreas/citologia , Pancreatite/etiologia , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Esfingolipídeos/metabolismo , Esfingolipídeos/farmacologia
7.
Placenta ; 90: 58-61, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056553

RESUMO

INTRODUCTION: Exosomes are membrane-bound small extracellular vesicles, which play important roles in intercellular communication, including the feto-maternal communication. Placenta-derived exosomes have been identified in maternal blood of a variety of species, including cattle and sheep. METHODS: Transmission electron microscopy is used to characterize intraluminal vesicles in binucleate trophoblast cell secretory granules and extracellular vesicles in placentome samples from eight ruminant species of the bovidae and cervidae clades. RESULTS: In all species the secretory granules of binucleate cells contain intraluminal vesicles of 40-70 nm diameter. After fusion of the binucleate trophoblast cells with cells of the uterine epithelium these vesicles are exocytosed together with the granule's secretory proteins. The vesicles are located at the basement membrane of the uterine epithelium and in the connective tissue underneath. DISCUSSION: We suggest that these vesicles function as exosomes. Their function might be either locally in the maternal endometrial stroma or they could have systemic functions after entering the maternal blood. Earlier electron microscopical studies in other ruminants, including species of the most basic ruminant clade (tragulidae), indicate that the intraluminal vesicles are a general feature of ruminant binucleate trophoblast cell granules. Our findings suggest that ruminant BNC are a source of exosomes, which are released into the maternal organism and are thus a newly described type of feto-maternal communication in ruminants.


Assuntos
Exossomos/ultraestrutura , Placenta/ultraestrutura , Trofoblastos/ultraestrutura , Útero/ultraestrutura , Animais , Feminino , Microscopia Eletrônica de Transmissão , Gravidez , Ruminantes
8.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619556

RESUMO

Rotavirus (RV) replicates in round-shaped cytoplasmic viral factories, although how they assemble remains unknown. During RV infection, NSP5 undergoes hyperphosphorylation, which is primed by the phosphorylation of a single serine residue. The role of this posttranslational modification in the formation of viroplasms and its impact on virus replication remain obscure. Here, we investigated the role of NSP5 during RV infection by taking advantage of a modified fully tractable reverse-genetics system. A trans-complementing cell line stably producing NSP5 was used to generate and characterize several recombinant rotaviruses (rRVs) with mutations in NSP5. We demonstrate that an rRV lacking NSP5 was completely unable to assemble viroplasms and to replicate, confirming its pivotal role in rotavirus replication. A number of mutants with impaired NSP5 phosphorylation were generated to further interrogate the function of this posttranslational modification in the assembly of replication-competent viroplasms. We showed that the rRV mutant strains exhibited impaired viral replication and the ability to assemble round-shaped viroplasms in MA104 cells. Furthermore, we investigated the mechanism of NSP5 hyperphosphorylation during RV infection using NSP5 phosphorylation-negative rRV strains, as well as MA104-derived stable transfectant cell lines expressing either wild-type NSP5 or selected NSP5 deletion mutants. Our results indicate that NSP5 hyperphosphorylation is a crucial step for the assembly of round-shaped viroplasms, highlighting the key role of the C-terminal tail of NSP5 in the formation of replication-competent viral factories. Such a complex NSP5 phosphorylation cascade may serve as a paradigm for the assembly of functional viral factories in other RNA viruses.IMPORTANCE The rotavirus (RV) double-stranded RNA genome is replicated and packaged into virus progeny in cytoplasmic structures termed viroplasms. The nonstructural protein NSP5, which undergoes a complex hyperphosphorylation process during RV infection, is required for the formation of these virus-induced organelles. However, its roles in viroplasm formation and RV replication have never been directly assessed due to the lack of a fully tractable reverse-genetics (RG) system for rotaviruses. Here, we show a novel application of a recently developed RG system by establishing a stable trans-complementing NSP5-producing cell line required to rescue rotaviruses with mutations in NSP5. This approach allowed us to provide the first direct evidence of the pivotal role of this protein during RV replication. Furthermore, using recombinant RV mutants, we shed light on the molecular mechanism of NSP5 hyperphosphorylation during infection and its involvement in the assembly and maturation of replication-competent viroplasms.


Assuntos
Genética Reversa/métodos , Rotavirus/genética , Rotavirus/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Citoplasma/virologia , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , Mutação , Organelas , Fosforilação , RNA Viral/isolamento & purificação , Infecções por Rotavirus/virologia , Deleção de Sequência , Transfecção , Proteínas não Estruturais Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
9.
F1000Res ; 8: 727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448105

RESUMO

Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in cell nuclei, released into the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope. Alternatively, capsids gain access to the cytoplasm via dilated nuclear pores. They are enveloped by Golgi membranes. Us3 is a non-essential viral kinase that is involved in nucleus-to-cytoplasm translocation, preventing apoptosis and regulation of phospholipid-biosynthesis. Us3-deletion mutants (HSV-1∆Us3) accumulate in the perinuclear space. Nuclear and Golgi membranes proliferate, and homogeneous, proteinaceous structures of unknown identity are deposited in nuclei and cytoplasm. Glycoprotein K (gK), a highly hydrophobic viral protein, is essential for production of infectious progeny virus but, according to the literature, exclusively vital for envelopment of capsids by Golgi membranes. In the absence of Us3, virions remain stuck in the perinuclear space but mature to infectivity without reaching Golgi membranes, suggesting further function of gK than assumed. Methods: We constructed a HSV-1∆Us3 mutant designated CK177∆Us3gK-HA, in which gK was hemagglutinin (HA) epitope-tagged in order to localize gK by immunolabeling using antibodies against HA for light and electron microscopy. Results: CK177∆Us3gK-HA-infected Vero cells showed similar alterations as those reported for other HSV-1∆Us3, including accumulation of virions in the perinuclear space, overproduction of nuclear and Golgi membranes containing electron dense material with staining property of proteins. Immunolabeling using antibodies against HA revealed that gK is overproduced and localized at nuclear membranes, perinuclear virions stuck in the perinuclear space, Golgi membranes and on protein deposits in cytoplasm and nuclei. Conclusions: Us3 is involved in proper assembly of membranes needed for envelopment and incorporation of gK. Without Us3, virions derived by budding at nuclear membranes remain stuck in the perinuclear space but incorporate gK into their envelope to gain infectivity.


Assuntos
Herpesvirus Humano 1 , Animais , Chlorocebus aethiops , Glicoproteínas , Células Vero , Proteínas Virais , Vírion
10.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270230

RESUMO

Cellular and viral factors participate in the replication cycle of rotavirus. We report that the guanine nucleotide exchange factor GBF1, which activates the small GTPase Arf1 to induce COPI transport processes, is required for rotavirus replication since knocking down GBF1 expression by RNA interference or inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. This reduction in virus yield was related to a block in virus assembly, since in the presence of either BFA or GCA, the assembly of infectious mature triple-layered virions was significantly prevented and only double-layered particles were detected. We report that the catalytic activity of GBF1, but not the activation of Arf1, is essential for the assembly of the outer capsid of rotavirus. We show that both BFA and GCA, as well as interfering with the synthesis of GBF1, alter the electrophoretic mobility of glycoproteins VP7 and NSP4 and block the trimerization of the virus surface protein VP7, a step required for its incorporation into virus particles. Although a posttranslational modification of VP7 (other than glycosylation) could be related to the lack of trimerization, we found that NSP4 might also be involved in this process, since knocking down its expression reduces VP7 trimerization. In support, recombinant VP7 protein overexpressed in transfected cells formed trimers only when cotransfected with NSP4.IMPORTANCE Rotavirus, a member of the family Reoviridae, is the major cause of severe diarrhea in children and young animals worldwide. Despite significant advances in the characterization of the biology of this virus, the mechanisms involved in morphogenesis of the virus particle are still poorly understood. In this work, we show that the guanine nucleotide exchange factor GBF1, relevant for COPI/Arf1-mediated cellular vesicular transport, participates in the replication cycle of the virus, influencing the correct processing of viral glycoproteins VP7 and NSP4 and the assembly of the virus surface proteins VP7 and VP4.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hospedeiro-Patógeno , Rotavirus/crescimento & desenvolvimento , Montagem de Vírus , Replicação Viral , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Macaca mulatta , Carga Viral , Proteínas Virais/metabolismo
11.
F1000Res ; 8: 198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249678

RESUMO

Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Membrana Nuclear , Proteínas Serina-Treonina Quinases , Proteínas Virais , Capsídeo , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Virais/fisiologia
12.
J Morphol ; 280(4): 615-622, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30805975

RESUMO

According to the "parent-offspring conflict hypothesis" the rapid evolution and diversification of the mammalian placenta is driven by divergent optima of resource allocation between fetus and mother. The fetus has an interest to maximize its resource intake, while the mother has an interest to restrict the transfer of resources, and thus retain resources for subsequent pregnancies. In the epitheliochorial placenta, the contacting fetal and maternal surfaces at the feto-maternal interface are covered with microvilli, which leads to an increase of membrane surfaces available for transport processes. Because membranes are the site of active transport, the conflict hypothesis predicts that the fetal surfaces at the feto-maternal interfaces are larger than the maternal ones. We use transmission electron microscopy and a stereological method to estimate the factors by which the apical fetal and maternal membranes are enlarged by the microvilli. Ten species with an epitheliochorial placenta were studied. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to create three-dimensional models of the interdigitating microvilli of the bovine and porcine placenta. In all species, the fetal surface was larger than the maternal. This was due to a higher number of fetal microvilli and to the presence of membrane folds at the base of the fetal, but not of maternal microvilli. Our results suggest that the ultrastructural morphology of the feto-maternal interface in the epitheliochorial placenta is shaped by conflicting interests between fetus and mother and thus represent a so far neglected arena of the parent-offspring conflict.


Assuntos
Evolução Biológica , Feto/ultraestrutura , Microvilosidades/ultraestrutura , Placenta/ultraestrutura , Animais , Bovinos , Feminino , Processamento de Imagem Assistida por Computador , Gravidez , Suínos
13.
PLoS Pathog ; 14(11): e1007415, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30427944

RESUMO

The family Arenaviridae comprises three genera, Mammarenavirus, Reptarenavirus and the most recently added Hartmanivirus. Arenaviruses have a bisegmented genome with ambisense coding strategy. For mammarenaviruses and reptarenaviruses the L segment encodes the Z protein (ZP) and the RNA-dependent RNA polymerase, and the S segment encodes the glycoprotein precursor and the nucleoprotein. Herein we report the full length genome and characterization of Haartman Institute snake virus-1 (HISV-1), the putative type species of hartmaniviruses. The L segment of HISV-1 lacks an open-reading frame for ZP, and our analysis of purified HISV-1 particles by SDS-PAGE and electron microscopy further support the lack of ZP. Since we originally identified HISV-1 in co-infection with a reptarenavirus, one could hypothesize that co-infecting reptarenavirus provides the ZP to complement HISV-1. However, we observed that co-infection does not markedly affect the amount of hartmanivirus or reptarenavirus RNA released from infected cells in vitro, indicating that HISV-1 does not benefit from reptarenavirus ZP. Furthermore, we succeeded in generating a pure HISV-1 isolate showing the virus to replicate without ZP. Immunofluorescence and ultrastructural studies demonstrate that, unlike reptarenaviruses, HISV-1 does not produce the intracellular inclusion bodies typical for the reptarenavirus-induced boid inclusion body disease (BIBD). While we observed HISV-1 to be slightly cytopathic for cultured boid cells, the histological and immunohistological investigation of HISV-positive snakes showed no evidence of a pathological effect. The histological analyses also revealed that hartmaniviruses, unlike reptarenaviruses, have a limited tissue tropism. By nucleic acid sequencing, de novo genome assembly, and phylogenetic analyses we identified additional four hartmanivirus species. Finally, we screened 71 individuals from a collection of snakes with BIBD by RT-PCR and found 44 to carry hartmaniviruses. These findings suggest that harmaniviruses are common in captive snake populations, but their relevance and pathogenic potential needs yet to be revealed.


Assuntos
Arenavirus/classificação , Arenavirus/genética , Animais , Arenaviridae/genética , Infecções por Arenaviridae/virologia , Sequência de Bases , Boidae/virologia , Linhagem Celular , Corpos de Inclusão Viral/patologia , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
14.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142132

RESUMO

Despite the availability of two attenuated vaccines, rotavirus (RV) gastroenteritis remains an important cause of mortality among children in developing countries, causing about 215,000 infant deaths annually. Currently, there are no specific antiviral therapies available. RV is a nonenveloped virus with a segmented double-stranded RNA genome. Viral genome replication and assembly of transcriptionally active double-layered particles (DLPs) take place in cytoplasmic viral structures called viroplasms. In this study, we describe strong impairment of the early stages of RV replication induced by a small molecule known as an RNA polymerase III inhibitor, ML-60218 (ML). This compound was found to disrupt already assembled viroplasms and to hamper the formation of new ones without the need for de novo transcription of cellular RNAs. This phenotype was correlated with a reduction in accumulated viral proteins and newly made viral genome segments, disappearance of the hyperphosphorylated isoforms of the viroplasm-resident protein NSP5, and inhibition of infectious progeny virus production. In in vitro transcription assays with purified DLPs, ML showed dose-dependent inhibitory activity, indicating the viral nature of its target. ML was found to interfere with the formation of higher-order structures of VP6, the protein forming the DLP outer layer, without compromising its ability to trimerize. Electron microscopy of ML-treated DLPs showed dose-dependent structural damage. Our data suggest that interactions between VP6 trimers are essential, not only for DLP stability, but also for the structural integrity of viroplasms in infected cells.IMPORTANCE Rotavirus gastroenteritis is responsible for a large number of infant deaths in developing countries. Unfortunately, in the countries where effective vaccines are urgently needed, the efficacy of the available vaccines is particularly low. Therefore, the development of antivirals is an important goal, as they might complement the available vaccines or represent an alternative option. Moreover, they may be decisive in fighting the acute phase of infection. This work describes the inhibitory effect on rotavirus replication of a small molecule initially reported as an RNA polymerase III inhibitor. The molecule is the first chemical compound identified that is able to disrupt viroplasms, the viral replication machinery, and to compromise the stability of DLPs by targeting the viral protein VP6. This molecule thus represents a starting point in the development of more potent and less cytotoxic compounds against rotavirus infection.


Assuntos
RNA Polimerase III/antagonistas & inibidores , Rotavirus/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Estruturas Virais/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Rotavirus/química , Rotavirus/efeitos dos fármacos , Células Sf9 , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
15.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263265

RESUMO

During the late stages of rotavirus morphogenesis, the surface proteins VP4 and VP7 are assembled onto the previously structured double-layered virus particles to yield a triple-layered, mature infectious virus. The current model for the assembly of the outer capsid is that it occurs within the lumen of the endoplasmic reticulum. However, it has been shown that VP4 and infectious virus associate with lipid rafts, suggesting that the final assembly of the rotavirus spike protein VP4 involves a post-endoplasmic reticulum event. In this work, we found that the actin inhibitor jasplakinolide blocks the cell egress of rotavirus from nonpolarized MA104 cells at early times of infection, when there is still no evidence of cell lysis. These findings contrast with the traditional assumption that rotavirus is released from nonpolarized cells by a nonspecific mechanism when the cell integrity is lost. Inspection of the virus present in the extracellular medium by use of density flotation gradients revealed that a fraction of the released virus is associated with low-density membranous structures. Furthermore, the intracellular localization of VP4, its interaction with lipid rafts, and its targeting to the cell surface were shown to be prevented by jasplakinolide, implying a role for actin in these processes. Finally, the VP4 present at the plasma membrane was shown to be incorporated into the extracellular infectious virus, suggesting the existence of a novel pathway for the assembly of the rotavirus spike protein.IMPORTANCE Rotavirus is a major etiological agent of infantile acute severe diarrhea. It is a nonenveloped virus formed by three concentric layers of protein. The early stages of rotavirus replication, including cell attachment and entry, synthesis and translation of viral mRNAs, replication of the genomic double-stranded RNA (dsRNA), and the assembly of double-layered viral particles, have been studied widely. However, the mechanisms involved in the later stages of infection, i.e., viral particle maturation and cell exit, are less well characterized. It has been assumed historically that rotavirus exits nonpolarized cells following cell lysis. In this work, we show that the virus exits cells by a nonlytic, actin-dependent mechanism, and most importantly, we describe that VP4, the spike protein of the virus, is present on the cell surface and is incorporated into mature, infectious virus, indicating a novel pathway for the assembly of this protein.


Assuntos
Actinas/metabolismo , Proteínas do Capsídeo/metabolismo , Membrana Celular/virologia , Microdomínios da Membrana/virologia , Morfogênese , Infecções por Rotavirus/virologia , Rotavirus/patogenicidade , Animais , Proteínas do Capsídeo/genética , Membrana Celular/metabolismo , Células Cultivadas , Rim/metabolismo , Rim/virologia , Macaca mulatta , Microdomínios da Membrana/metabolismo , Infecções por Rotavirus/metabolismo , Montagem de Vírus , Liberação de Vírus , Replicação Viral
16.
PLoS One ; 12(6): e0179607, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28622358

RESUMO

In infected cells rotavirus (RV) replicates in viroplasms, cytosolic structures that require a stabilized microtubule (MT) network for their assembly, maintenance of the structure and perinuclear localization. Therefore, we hypothesized that RV could interfere with the MT-breakdown that takes place in mitosis during cell division. Using synchronized RV-permissive cells, we show that RV infection arrests the cell cycle in S/G2 phase, thus favoring replication by improving viroplasms formation, viral protein translation, and viral assembly. The arrest in S/G2 phase is independent of the host or viral strain and relies on active RV replication. RV infection causes cyclin B1 down-regulation, consistent with blocking entry into mitosis. With the aid of chemical inhibitors, the cytoskeleton network was linked to specific signaling pathways of the RV-induced cell cycle arrest. We found that upon RV infection Eg5 kinesin was delocalized from the pericentriolar region to the viroplasms. We used a MA104-Fucci system to identify three RV proteins (NSP3, NSP5, and VP2) involved in cell cycle arrest in the S-phase. Our data indicate that there is a strong correlation between the cell cycle arrest and RV replication.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular , Rotavirus/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular , Transdução de Sinais , Replicação Viral/fisiologia , Animais , Ciclina B1/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/virologia , Cães , Células HEK293 , Humanos , Cinesinas/metabolismo , Macaca mulatta , Células Madin Darby de Rim Canino , Proteínas Virais/metabolismo
17.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331098

RESUMO

There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant.IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/isolamento & purificação , Glicoproteínas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vírus Vaccinia/genética , Vírion/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Ebola/genética , Ebolavirus/genética , Ebolavirus/imunologia , Ebolavirus/fisiologia , Glicoproteínas/genética , Humanos , Imunoglobulina G/sangue , Camundongos , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Vírion/fisiologia
18.
Int J Mol Sci ; 18(2)2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28212334

RESUMO

Rotaviruses (RVs) are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs) are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species.


Assuntos
Anticorpos Antivirais/imunologia , Vetores Genéticos/genética , Herpesvirus Humano 1/genética , Leite/imunologia , Vacinas contra Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Rotavirus/imunologia , Vacinação , Animais , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , Linhagem Celular Tumoral , Chlorocebus aethiops , Códon , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Gravidez , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/administração & dosagem , Transdução Genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Células Vero , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
19.
PLoS One ; 12(1): e0170908, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125695

RESUMO

As their names imply, parvoviruses of the genus Dependovirus rely for their efficient replication on the concurrent presence of a helpervirus, such as herpesvirus, adenovirus, or papilloma virus. Adeno-associated virus 2 (AAV2) is such an example, which in turn can efficiently inhibit the replication of each helpervirus by distinct mechanisms. In a previous study we have shown that expression of the AAV2 rep gene is not compatible with efficient replication of herpes simplex virus 1 (HSV-1). In particular, the combined DNA-binding and ATPase/helicase activities of the Rep68/78 proteins have been shown to exert opposite effects on the replication of AAV2 and HSV-1. While essential for AAV2 DNA replication these protein activities account for the Rep-mediated inhibition of HSV-1 replication. Here, we describe a novel Rep mutant (Rep-D371Y), which displayed an unexpected phenotype. Rep-D371Y did not block HSV-1 replication, but still supported efficient AAV2 replication, at least when a double-stranded AAV2 genome template was used. We also found that the capacity of Rep-D371Y to induce apoptosis and a Rep-specific DNA damage response was significantly reduced compared to wild-type Rep. These findings suggest that AAV2 Rep-helicase subdomains exert diverging activities, which contribute to distinct steps of the AAV2 life cycle. More important, the novel AAV2 mutant Rep-D371Y may allow deciphering yet unsolved activities of the AAV2 Rep proteins such as DNA second-strand synthesis, genomic integration or packaging, which all involve the Rep-helicase activity.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Herpesvirus Humano 1/genética , Proteínas Virais/genética , Replicação Viral , Animais , Chlorocebus aethiops , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dependovirus/metabolismo , Herpesvirus Humano 1/metabolismo , Células Vero , Proteínas Virais/metabolismo
20.
Cells Tissues Organs ; 203(5): 287-294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27902976

RESUMO

Binucleate trophoblast giant cells (BNC) are the characteristic feature of the ruminant placenta. During their development, BNC pass through 2 acytokinetic mitoses and become binucleate with 2 tetraploid nuclei. In this study, we investigate the number and location of centrosomes in bovine BNC. Centrosomes typically consist of 2 centrioles surrounded by electron-dense pericentriolar material. Duplication of centrosomes is tightly linked to the cell cycle, which ensures that the number of centrosomes remains constant in proliferating diploid cells. Alterations of the cell cycle, which affect the number of chromosome sets, also affect the number of centrosomes. In this study, we use placentomal tissue from pregnant cows (gestational days 80-230) for immunohistochemical staining of γ-tubulin (n = 3) and transmission electron microscopy (n = 3). We show that mature BNC have 4 centrosomes with 8 centrioles, clustered in the angle between the 2 cell nuclei. During the second acytokinetic mitosis, the centrosomes must be clustered to form the poles of a bipolar spindle. In rare cases, centrosome clustering fails and tripolar mitosis leads to the formation of trinucleate "BNC". Generally, centrosome clustering occurs in polyploid tumor cells, which have an increased number of centrioles, but it is absent in proliferating diploid cells. Thus, inhibition of centrosome clustering in tumor cells is a novel promising strategy for cancer treatment. BNC are a cell population in which centrosome clustering occurs as part of the normal life history. Thus, they might be a good model for the study of the molecular mechanisms of centrosome clustering.


Assuntos
Centrossomo/ultraestrutura , Células Gigantes/citologia , Trofoblastos/citologia , Animais , Bovinos , Ciclo Celular , Centríolos/metabolismo , Centríolos/ultraestrutura , Centrossomo/metabolismo , Feminino , Células Gigantes/metabolismo , Células Gigantes/ultraestrutura , Imuno-Histoquímica , Neoplasias/metabolismo , Neoplasias/terapia , Gravidez , Trofoblastos/metabolismo , Trofoblastos/ultraestrutura , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...